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Abstract. The purpose of this paper is to give new formulations for the unconstrained 0-1 nonlinear 
problem. The unconstrained 0-1 nonlinear problem is reduced to nonlinear continuous problems 
where the objective functions are piecewise linear. In the first formulation, the objective function is a 
difference of two convex functions while the other formulations lead to concave problems. It is shown 
that the concave problems we obtain have fewer integer local minima than has the classical concave 
formulation of the 0-1 unconstrained 0-1 nonlinear problem. 
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1. Introduction 

A 0-1 unconstrained nonlinear problem (P) is generally formulated as 

me i HX;I {0, 1}"} , 

where NiC {1 . . . .  , n}, c iEN,  m ~ N .  
In a very interesting paper, Rosenberg [8] showed that the problem (P) can be 

reduced to the continuous nonlinear problem 

mCiHxil [01 i]n} , (/5) Min{/__~ 1 (jeNi ,/IxE 
since the optimal value of (/5) is attained in at least one vertex of the hypercube 
[0, 1]". Unfortunately, the objective function of (/5) is neither convex nor concave 
so that (/5) is as difficult as (P). Nevertheless, as discussed by Hansen-Jaumard- 
Mathon [4], the objective function of (/5) can be approximated by a difference of 
convex functions and therefore d-c programming (minimization of a difference of 
convex functions, see [9]) can be used. However, d-c programming can only solve 
small programs. 

According to Hansen-Jaumard-Mathon,  concave programming (minimization 
of a concave function over a convex set, see [6]) seems to be more promising. The 
transformation of (P) into a concave problem is quite classical (at least in the 
quadratic case, see [6]) and will be discussed in the next section. 

The purpose of this paper is to give new formulations of (P) where the 
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objective functions are piecewise linear. In the first formulation, the objective 
function is exactly a difference of two (piecewise linear) convex functions while 
the two last formulations lead to concave problems. As we shall prove and it 
should be useful, the concave problems we obtain have fewer integer local 
minima than the concave problem deduced from (P)  in a classical way. 

In order to have a self-contained paper, we first recall and discuss the classical 
transformation of (P)  into a concave problem. 

2. The Classical Transformation of (P) into a Concave Problem 

The classical transformation of (P)  into a concave problem uses the fact that 

2 x / ~  (0, 1) ¢:>x/= x j .  

Thus we can subtract a quadratic term and add a linear term to the objective 
function f of (P)  without modifying the values on the vertices of [0, 1]". The new 
objective function is then: 

P ~ x ~ + P ~ x y  fp (X) = f(x) - -~ ~ 
1"=1 j = l  

The value of p must be chosen so that fp is concave, that is, so that for any x in 

[0, 1] ~, the greatest eigenvalue Ap(X) of V2fp(x) is negative. 
Since V~fp(x) = V2f(x) - pI Vx E [0, 1]", we have Ap(x) = h(x) - p, where h(x) is 

the greatest eigenvalue of 72f(x). 
In order that f be concave, we must take 

p >i h(x) Vx E [0, 1]" ¢:> p I> A = max{ h(x)/x C [0, 1]" }.  

The optimization problem as formulated above is harder than the initial 
problem (P) ,  except if A(x) is constant as in the case where (P)  is a 0-1 quadratic 
problem (but, even in this case, this value might be expensive to compute).  It 
then seems better to use another technique: a matrix with a dominated diagonal is 
negative semi-definite (see [1]). Therefore we can consider the following objective 
function: 

g , ( x )  = f ( x )  - E j = ,  _ _ _ 

where 3 i J={~  otherwiseifjENiand]N~l>~2'. 

The function g is then concave since, obviously, for any x in [0, 1] n, V2g(x) has a 
dominated diagonal. 

Thus minimizing f i  or g over [0, 1]" is equivalent to solving (P).  Some 
algorithms for concave programming can be found in [6]. The difficulty of a 
concave problem increases with the number of local minima. As mentioned 
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before, we shall present other concave formulations of problem (P) but with a 
smaller number of integer minima than in the classical formulation. 

Let us first express (P) as a d-c problem (a problem where the objective 
function is a difference of two convex functions). 

3. Unconstrained 0 -1  Nonlinear Programming as d-c Programming 

In this paper, we shall often use the following lemma, which is easy to verify and 
which will allow us to express the objective function of (P) as a piecewise linear 
function. 

LEMMA 3.1. 

x E { 0 , 1 } " ~ V M C { 1 , . . . , n }  I-Ixj  
] ~ M 

=minM(xi} (3.1) 

=max{0, E I ] - [ M I +  1}. (3.2) 
j ~ M  

Changing Hjenx j by either (3.1) or (3.2), we obtain equivalent formulations for 
(P) with piecewise linear objective functions. 

LEMMA 3.2. 

VM C ( 1 , . . .  , n} x ~--~ min{x~} 
j E M  

VMC {1 , . . . , n }x~max fO ,  ~, x . - I M l +  l } 
]EM 1 

Proof. trivial. 

is a concave function, 

is a convex function. 

Let us now consider the following problem: 

(P')  Min c~ min{x.}/x E {0, 1}" 
_ JEN J 

By Lemma 3.1, this problem is equivalent to (P). Relaxing the integrality 
constraints in (P') ,  we obtain the continuous problem 

(DCP) Min c i min{x.}/x E [0, 11 n 
.= ]ENi l 

By Lemma 3.2 and since coefficients c i are unrestricted in sign, the objective 
function of (DCP) is a difference of two convex piecewise linear functions. 

Theorem 3.3 below gives an equivalence between (P) and (DCP). 

THEOREM 3.3. The optimal value of (DCP) is attained in at least one vertex of 
the hypercube [0, 1]". 
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Proof. Let x* be an optimal solution of (DCP). Without loss of generality, we 
*-< * ~ < ' "  ~ x*. Thus, x* is also an optimal solution of: can suppose that xl  -~ x2 

Min c imin{x.}/O~<x 1 ~<x 2 ~<.. .  ~<xn ~< 1 
_ jENi  1 

Let us denote by Ji the smallest j in Ni. Then, for any x feasible, minjeN~(xj} = xjl 
and x* is also optimal solution of 

Min c j x j , / O ~ < x ~ x  2~<-. .~<x~<~l . 

This last problem is linear and reaches its optimal value at an extreme point £ of 
its feasible set S: 

S = {x E W'/Hx <~ e},  

where H and e are the following matrix and vector 

"-1  0 0 
1 - 1  0 
0 1 - 1  0 

0 1 - 1  0 

0 

H is totally unimodular 
graph (see [3]): 

1 - 1  0 
0 1 -1  
0 0 1 

e - -  

since it represents the incidence matrix 

0 

I 
01 

.1_1 

of the directed 

Since e is an integer vector and H totally unimodular,  all the extreme points of S 
are integer. 

Thus, there exists £ E {0, 1} ~ such that 0 ~< ;?1 <~ x2 ~<" " " <~ xn and: 

i = l  Cjxj*i = i=I C j X j i '  

that is 2 is an integer optimal solution of (DCP). [] 

Therefore the 0-1 unconstrained nonlinear problem appears to be a particular 
case of d-c programming (see [9] for algorithms). 

Note that if c i is non-positive for all N i such that [ Ni [ ~> 2, then (DCP) (and 
therefore (P)), can be reduced to a convex minimization problem. This confirms 
that such problems (P),  which have non-positive coefficients for the nonlinear 
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terms, are easier to solve since their underlying convex structure is helpful for 
minimizing. For example, the quadratic 0-1 problem with negative double 
product coefficients is solvable in a polynomial time algorithm (see [7]). 

On the other hand, if c i is non-negative for all N i such that [Nil>~ 2, then 
(DCP)  (and therefore (P)),  is a concave minimization problem. In the next 
section, we shall give concave formulations for (P) even if there exists some i so 
that I N~ I >~ 2 and c i <<- O. 

Note also that if we replace IIj~u. xj by (3.2) we obtain a d-c objective function 
and an equivalent formulation (P") for (P), but we are not able to relax the 
integrality constraints in (P") without modifying the optimal v a l u e . . .  

4. 0 - 1  Unconstrained Nonlinear Programming as Concave Programming 

In order to obtain concave formulations for (P), we have to eliminate the convex 
part of (DCP) ,  that is, we have to reformulate min~Ni {xj} for i such that ci ~< 0 
and I N i ] ~  > 2. For the sake of simplicity suppose that the set of such i is 
(1 . . . .  , p}.  

The first possibility is to linearize the convex part. This can be done by 
introducing new variables z, and several constraints in (DCP).  We then obtain a 
semi-linearized concave problem. 

2 (SLCP)  Min ~ ciz i + c i min{xj} 
i= l  i=p+l  jEN/ 

s.t. zi<~xj V j E N i ,  V i E { 1  . . . .  , p } .  

x [0,1]"  

z~>0 

Obviously, the objective function of (SLCP)  is concave. The following theorem 
establishes the equivalence, via Theorem 3.3, between (SLCP)  and (P). 

T H E O R E M  4.1. (SLCP)  and (DCP)  are two versions of  the same problem. 
Proof. It is sufficient to prove that (E, Z) optimal solution of ( S L C P ) ~  Y.i = 

minj~Ni {xj). Suppose this is not true. Then, there exists i E  (1 . . . .  , p} so that 
~?z < minj.E~{Ej}. Consider now (x*, z*) defined as: 

X* -.~- 3~ 

*=  zl V i # i  . zi  

z* = rain {Ej) 
J ~ N  i 

- ~ * Since c~ < 0 and z,.- z~, we have: 

* + rain {x~.} < ~ c~f~ + rain {Ej} ~ CiZ i jENi  i=1 i=p+l  i=1 i=p+l  JENi 

and this is a contradiction since (J?, ~) is optimal. [] 
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Therefore, the 0-1 unconstrained nonlinear problem (P) can be reduced to a 
concave minimization problem where the objective function is piecewise linear. 

It is important to note that if all the coefficients of the nonlinear terms are 
non-positive then (SCLP) is a linear problem and, therefore, (P) appears to be 
polynomially (in n and m) solvable. 

(SCLP) has the drawback of introducing additional variables and constraints. 
We can avoid this inconvenience: changing Hie M X i by max{0, r.i~ M x i - I M] + 1) 
for i in {1 . . . .  , p}, we obtain a concave objective function and the following 
concave minimization problem (CMP). 

(CMP) Min c, max 0, 2 x , -  IN i I+ 1 
- ,eN~ 

+ £ c, min ix ,} /xE[O,  1]"}. 
i = p + l  JENi 

Obviously, (CMP) is equivalent to (P) since a concave minimization problem 
reaches its optimal value at a vertex of its feasible set. 

The main advantage of (DCP), (SLCP) and (CMP) over the classical trans- 
formation of (P) into a concave minimization problem is that they have fewer 
integer local minima. First, recall that the only practical classical way of trans- 
forming (P) into a concave problem is to consider the objective function (see 
Section 2): 

1 " 1 8i,[cl[ x, g(x) = f(x) - ~ ~i, [ Ci I + ~ j=l 
j= l  - 

w h e r e  ~iJ={~ otherwiseifjENiandlNil>~2 

and the optimization problem (Q) 

(Q) Min{g(x)/x E[O, 1]"}. 

In our proof, we shall need the following lemma. 

LEMMA 4.2. For any M C { 1 , . . . ,  p} and for any x in [0, 1]" 

(i) max{O, 1~MXJ--[Mt+ 1} ~< mini / . '  • j E M  t I ~ 

(ii) max{0, ~ x i - I M [ +  1}--- > 1  2 1 E E x,+ H x,, 
j E M  IEM ]EM 

i E ' i r l  (iii) min{x,} - -  X j .  
, E M  " 2 I ~ M X J  2 E Xj  + 1  • j ~ M  " cM 

Proof. (i) If max{0, E,~ M x/-- I M [ + 1} = 0 then the result is obvious. Other- 
wise, max(0, E,E M x j - i M I + l } = x  i+E,eM_(i ) x j - i M  I+1,  where x i= 
min, eM{X,} but E , e M _ { h x j - [ M i + l < ~ 0 ~ m a x { 0 ,  E , e M X , - ] M [ + l } ~ x  S= 
minj~M{x,}. 
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(ii) Consider the optimization problem 

{, : 1  { }/ 
max ~ ~ x j - ~  ~ x , +  [ I  x j - m a x  0, Z x , - l M l + l  

j@M j@M j@M j@M 

x e [0,1]"}. 

Its optimal value is equal to max(v1, v2) 

v,=max ~ xi-  ~ xj+ ~ < I M I - 1 ;  @[0,11" , 
j jEM I j ~ M  

3 1 / 2  xj>~l V2 = max{ 1 jeM~" X~--2,~XJ+,~MXi+[MI--" ; --jeM M] 

- 1; x ~ [0 1]n / . 

Both objective functions are convex (since, for any x in [1, 0]", the Hessian has 
a dominating diagonal). Thus, the optimal values are attained at extreme points 
of the feasible sets. 

Since a matrix composed of 0-1 entries and having only one row is totally 
unimodular,  all the extreme points of the feasible sets are integer. 

Note that if x @ (0, 1}" is feasible for the first problem then IIj~ M xj = O. Thus 
v 1 = 0 since x~ E {0, 1} ¢:>xj = x~. 

x = ( 1 , . . . ,  1) is feasible for the second problem and the corresponding value is 
0. For all other integer points, we have IIj~ M xj = 0 and Ejc M xj - I M ] + 1 = 0. 
Consequently, v 2 = 0. 

Therefore: 

V x E [ 0 , 1 ] "  ~ ~ x j - ~  ~',xj+ xj~maxO,~,xj- lMl+l . 
j~:M jEM j jEM 

(iii) Consider now the optimization problem: 

{, : 1  ) 
max ~ 2 x j - ~  2 xj+ I--[ xj-m~(xi}/x@[O, 1]" 

jEM jEM j~M 

and let x* be an optimal solution of this problem. Without loss of generality we 
*~< *~<- ~< * a n d l E M .  can suppose that x 1 x 2 -- x .  

Thus x* is also an optimal solution of 

(, } max } x , .  rI . 
j j j~_M 

Since the objective function is convex, the optimal value is reached at an 
extreme point of its feasible set. It was shown, in the proof of Theorem 3.3, that 
such points are integer. Therefore, there exists E ~ (0, 1}" so that E is an optimal 
solution of the above problem. 

Thus :0<~EI<<-E2<~ ' "~Yn<- I .  
If xl = 0 then IIj~ M Ej = 0 and the corresponding objective value is 0. If E 1 --= 1 
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then Ilie M .~j = ] and the corresponding objective value is also O. So that: 

1 2 1 
E E + 1-I [] 

j e M  j a m  j a M  

We can now establish some relations between the local minima of (DCP), 
(SLCP),  (CMP) and (Q).  

T H E O R E M  4.3. (i) x local minimum for ( D C P ) ~  (x, z) local minimum for 
(SLCP) with zi = min/au, {xj} Vi E { 1 , . . . ,  p } .  
(ii) (x, z) local minimum for (SLCP) ~ x local minimum for (DCP). 
(iii) x local minimum for (DCP) and x integer~ x local minimum for (CMP). 
(iv) x local minimum for (CMP) and x integer~ x local minimum for (Q). 

Proof. (i) and (ii) are trivial. 
(iii) For the sake of simplicity, let us define 

D(x) = ~ c i min {x/} as the objective function of (DCP). 
i=I ja~. 

M(x) = ~, c i max 0, x: - I N,-I + 1 + c, min {x,} as the objec- 
i = I  ] • i = p + l  JaNi  ~ 

tive function of (CMP). 

~=1 je~ 2 i=a - 6q l ci] (xj - xj 2) as the objective function 

of (Q) .  

Since x is a local minimum for (DCP), there exists an open set V so that x E V 
and so that: 

Vy e V D [0, 1]" D(x) <~ D(y ) .  

By Lemma 4.2 we have: 

Vy E V D [0, 11" D(y)  < M ( y ) ,  

but x integer ~ D(x) = M(x). Thus, there exists an open set V so that x E V and 
so that: 

Vy E V D [0, 1]" M(x) = D(x) <~ D(y) <- M ( y ) ,  

which means that x is a local minimum for (CMP). 
(iv) x is local minimum for (CMP) implies that there exists an open set V such 

that x E V and 

Vy E V D [0, 1]n M(X) < M(y ) .  

By Lemma 4.2 we have: 

Vy ~ Y D [0, 1] ~ M(y) ~ g(y) 
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but x integer ~ M(x) = g(x). Thus, there exists an open set V so that x E V and so 
that: 

Vy ~ V f3 [0, 1]n M(x) = g(x) <~ M(y) <~ g(y),  

which means that x is a local minimum for (Q).  [] 

Therefore, the classical transformation of (P) into a concave problem might have 
more integer local minima than (DCP), (SLCP) and (CMP). Note that the 
implications (iii) and (iv) do not apply to local minima which are not integer. 
However, we are not really interested in non-integer local minima since, in 
solving (P), we are looking for local minima which are extreme points of the 
feasible set. Furthermore, if there exists a non-integer local minimum, then there 
also exists an integer local minimum having the same objective value. 

Defining I(DCP) (respectively I(SLCP), I(CMP), I(Q)) as the set of integer 
local minima of (DCP) (respectively (SLCP), . . .  , (Q)), from Theorem 4.3, we 
can deduce: 

I(SLCP) = I(DCP) C I(CMP) C I(Q) , 

One might wonder if the inverse inclusions are valid. The example below gives 
the answer to such a question: the inverse inclusions are definitely not valid. 

EXAMPLE 4.4. Consider the 0-1 unconstrained nonlinear problem 

(P) Min{-4xlx2x 3 "~- XlX 2 -[- XlX 3 q- X2X3/X ~ {0:, 1) 3} , 

then (Q) ,  (DCP) and (e )  are 

(Q) Min{g(x)/x E [0, 1] 3} 

g ( x )  = --4X1X2X 3 -b XIX z -b X1X 3 "-k XzX 3 -b 3(X 1 q- X 2 + X3) 
2 - + + 

(DCP) Min{D(x)/x E [0, 1] 3} 

D(x) = - 4  min{xl, x2, x3} + min{x~, x2} + rain{x1, x3} + min{x2, x3}, 

(CMP) Min{M(x)/x E [0, 1] 3) 

M(x) = min{xx, x2} + min{xl, x3} + min{xz, x3} - 4  max{0, ~=1 X i -  2) .  

Let us examine the integer points in order to determine whether they are local 
minima for one of the continuous problems above. 

• ~ = (0, 0, 0) is a local minimum for (CMP), therefore also for (Q) ,  but it is not 
a local minimum for (DCP) since: 

- D((0, 0, 0) + t(1, 1, 1)) = - t ~ ( 1 ,  1, 1) is a feasible descent direction at 
(0, 0, 0) for (DCP). 

- M((O, O, O) + t(dl, d2, d3)) = t(min{dl, dz} + min{dl, d3} + min{dz, d3} ) for 
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t sufficiently small, but d feasible direction at (0, 0, 0 ) ~  d 1 I>0, d 2 ~ 0 ,  

d 3 1> 0. Thus any feasible direction for (CMP) is an ascent direction. 
• Y = (1, 0, 0) is a local minimum for (CMP), therefore for (Q) ,  but is not a local 

minimum for (DCP). 
- d = (0, 1, 1) is a feasible descent direction at (1, 0, 0) for (DCP). 
- M((1, 0, 0) + t(dl, d2, d3) ) = t(d 2 + d 3 + min{d2, d3} ) for t sufficiently small. 

As any feasible direction is such that d 2/> 0, d 3/> 0, any feasible direction is 
an ascent direction for (CMP). 

• By symmetry (0, 1, 0) and (0, 0, 1) are local minima for (CMP) and (Q) ,  but 
not for (DCP). 

• J? = (1, 1, 0) is not a local minimum for (CMP), therefore not for (DCP), but it 
is a local minimum for (Q) .  
- M((1, 1, 1) + t(0, 1, 1)) -- - 2 t ~ ( 0 ,  1, 1) is a feasible descent direction for 

(CMP). 
- (Vg(1,1, O ) , d ) = - 2 d l - 2 d 2 + 3 d  3 but d feasible for (1,1,  0) ~ d1~< 0, 

d 2 ~< 0, d 3 ~> 0. Thus d ~ 0 and feasible ~ ( V g ( 1 ,  1, 0), d )  > 0 and then any 
feasible direction is an ascent direction for (Q) .  

• By symmetry (1, 0, 1) and (0, 1, 1) are not local minima for (CMP), nor for 
(DCP), but are local minima for (Q) .  

• 2 =  (1, 1, 1) is a local minimum for all the problems since it is the optimal 
solution. 

Then we have: 

I(Q) = {0,1} 3 

I(CMP) = {(0, 0, 0); (1, 0, 0); (0, 1, 0); (0, 0, 1); (1, 1, 1)} 

I(DCP) = I(SLCP) : {(1, 1, 1)}. 

For this particular problem (P) ,  all the integer points are local minima for ( Q )  
but  only a subset of them are local minima for (CMP) or (DCP). Furthermore,  
we must emphasize that (1, 0, 0), (0, 1, 0), (0, 0, 1) are not strict local minima for 
(CMP) (that is we can find a feasible direction d so that M is constant on the 
corresponding line) while they are strict local minima for (Q) .  

5 .  C o n c l u s i o n  

If, as we believe, the number  of local minima is a criterion for classifying concave 
formulations of (P) ,  then it appears that (SLCP) and (CMP) are really better  
than (Q) .  As shown by Example 4.4, the number of integer local minima could 
be strongly reduced by using (SLCP) instead of the classical transformation of 
(P)  into a concave minimization problem. On the other hand, it seems that 
concave minimization problems with piecewise linear objective functions are 
tractable (see [6]). 
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We emphasize that a 0-1 unconstrained nonlinear problem with only negative 
coefficients for the nonlinear terms does not need to be formulated as a concave 
problem. This particular kind of problem can be reduced to a linear problem and 
is then polynomially (in n and m) solvable. 

In closing, we note the formulations suggested for the 0-1 unconstrained 
nonlinear problem can be extended to 0-1 nonlinear problems with linear 
constraints since Kalantari-Rosen [5] and Borchardt [2] showed how a 0-1 
nonlinear minimization problem with linear constraints and a concave objective 
function can be modified in order to obtain an integer solution when the 
integrality constraints are dropped. 
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